Find a solution to sec^(2)(x)+2tan(x) = 0

This question is a quadratic equation in hiding. The first step to solving this would be to expand sec^(2)(x) into 1 + tan^(2)(x) as they are equivalent. This can be derived by dividing sin^(2)(x) + cos^(2)(x) = 1 by cos^(2)(x). This will give us the equation tan^(2)(x) + 2tan(x) +1 = 0. If tan(x) is set to equal z, we end up with the equation z^(2)+2z+1 = 0, which gives us the solution z = -1 when the quadratic formula is used. If we substitute tan(x) back in, we end up with tan(x) = -1, which gives us the solution x = -45 when our calculators are used.

MB
Answered by Mohamed B. Maths tutor

5250 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))


What is the integral of sin^2(x)?


How would I differentiate something with the product rule?


Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning