Use integration to find I = ∫ xsin3x dx

Use integration by parts, let U = x, the derivative of U = 1, let the derivative of V = sin3x and intergrate the derivative of V to arrive at V = (-1/3)(cos3x). Substitute the value into the formula uv − ∫ vdu dx dx, arrive at I = (x)(-1/3)(cos3x) - ∫(1)(-1/3)(cos3x)dx which can be written us I = (-x/3)(cos3x) +∫(1/3)(cos3x)dx. ∫(1)(1/3)(cos3x)dx = (1/9)(sin3x). Now put that into the original equation giving the final answer I = (-x/3)(cos3x)+ (1/9)(sin3x) + c,

ZL
Answered by Zifeng L. Maths tutor

6055 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is (5+3i)*(3+5i)


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


Integrate (3x^2 - (1/4)x^-2 + 3) dx


Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences