Use integration to find I = ∫ xsin3x dx

Use integration by parts, let U = x, the derivative of U = 1, let the derivative of V = sin3x and intergrate the derivative of V to arrive at V = (-1/3)(cos3x). Substitute the value into the formula uv − ∫ vdu dx dx, arrive at I = (x)(-1/3)(cos3x) - ∫(1)(-1/3)(cos3x)dx which can be written us I = (-x/3)(cos3x) +∫(1/3)(cos3x)dx. ∫(1)(1/3)(cos3x)dx = (1/9)(sin3x). Now put that into the original equation giving the final answer I = (-x/3)(cos3x)+ (1/9)(sin3x) + c,

ZL
Answered by Zifeng L. Maths tutor

6516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3*(x^2+1)


A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


How do you integrate the natural logarithm?


Evaluate the integral between 5 and 3 for xe^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning