Find dy/dx if y=(x^3)(e^2x)

Use product rule. Set u=x^3 and v=e^2x. Differentiate u and v. Then dy/dx = uv'+vu' = (3x^2)*(e^(2x))+(2x^3)(e^(2x)). This problem is best explained written on a whiteboard (it's difficult to give an explanation in prose without proper formatting).

JM
Answered by Joseph M. Maths tutor

6408 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.


Calculate the integral of e^x*sin x


Prove that the square of an odd integer is odd.


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning