Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]

1/(1+2x) dx = 4e^(-2t) dt      Integrate both sides:   ln[2/(1+2x)] = -8e^(-2t) + c      input x = 1/2, t = 0:  ln(2/2) = -8*(1) + c        ln 1 = 0,  so c = 8ln[2/1+2x] = 8[1-e^(-2t)]

HF
Answered by Henry F. Maths tutor

3350 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find the angle between two 3-dimensional vectors:


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


Differentiate 8x^4 + 2x^2 + 10


The curve C has the equation (x^2)+4xy-8(y^2)+27=0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning