Solve algebraically the following if there is a solution: x+y=3 2x+y=5 x^2+y=6

First we realize that the question asks IF there is a solutionLet us start with the simplest equations, x+y=3 and 2x+y=5By subtracting the first equation from the second we see x=2 and subbing into x+y=3 we get 2+y=3 and so y=1Now does this 'agree' with our third equation? subbing our values in for x and y into x^2+y=9 we get 2^2+1=5 which means 5=5 which is clearly true. So x=2 and y=1 are the solutions to all three equations.

MS
Answered by Max S. Maths tutor

2867 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify Fully 4(2x+1)-2(x-5) .


Expand and simplify (x − 4)(2x + 3y)^2


Shampoo is sold in two sizes. 1) 500 ml for £1.98 2) 3 litres for £12.80 (now 15% off). Which is better value for money?


Write 0.03444444 as a fraction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences