How do I find out the equation of a line?

First of all, we must remember the formula for the equation of a line.

This is y=mx+c.

It is important to understand what each part of the equation means:

-y is the y-coordinate of any point on the line
-x is the x coordinate of the point on the line
-'m' stands for the gradient of the line
-'c' indicates the y-intercept (the point at which the line crosses the y axis)

1. Pick a point on the line to get your x and y co-ordinates. We want to try and use whole numbers where possible to make our sums easier.

2. Next, we can find the gradient of the line by finding the change in x/change in y (or some may know this as step/rise).
To do this, we need to find another point on the line, therefore to find the change we will do x1-x2/y1-y2.

Be careful here to note whether the line is a positive or negative gradient, as it is easy to get confused. If your answer is outside the ranges of -1 to 1, something in your math is wrong.

3. Once you have found your gradient the only other unknown is c. Substitute your value of m and the coordinates of any point on the line into your equation and rearrange to find the value of c.

The easiest way to do this is usually to subtract mx from both sides leaving us with y-mx=c.

4. To finish, write your equation of the line with your values of m and c, but do not put values into x and y are these are not constant values.

JB
Answered by Jessica B. Maths tutor

2738 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

y = (x + 2)(x + 5)


A bonus of £2100 is shared by 10 people who work for a company. 40% of the bonus is shared equally between 3 managers. The rest of the bonus is shared equally between 7 salesmen. One of the salesmen says, “If the bonus is shared equally between all 10


Make F the subject of the formula: C= 5(F-32) / 9


factorise 2x^2 +10x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences