The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?

Use the chain rule to differentiate the original equation: this results in 8x-3y^2*(dy/dx) + 2ln(3)3^2x=0. This can be rearranged to find dy/dx as a function of y and x: 3y^2(dy/dx)=8x+2ln(3)*3^2x -> dy/dx=(8x+2ln(3)3^2x)/3y^2. At this point, dy/dx at point P can be computed: dy/dx=(80+2ln(3)3^0)/31^2=2ln(3)/3

TD
Answered by Tutor65063 D. Maths tutor

3426 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


What is the partial fraction expansion of (x+2)/((x+1)^2)?


Draw y + 14 = x ( x - 4 ) and label all points of intersection with axes.


What is the remainder when you divide 2x^3+7x^2-4x+7 by x^2+2x-1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning