Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima

A stationary point occurs when the first derivative of the function = 0. The first derivative of f(x) is df(x)/dx = 3x^2 - 27Setting this to zero gives 3x^2 - 27 = 0 -> x = +/- 3
To find whether it is a maxima or minima we find the second derivative d^2 f(x)/dx^2 at 3 and -3d^2 f(x)/dx^2 = 6x d^2 f(x)/dx^2 when x = 3 -> 18As a rule, when the second derivative > 0, the point is a minimumd^2 f(x)/dx^2 when x = -3 -> -18As a rule, when the second derivative < 0, the point is a maximum

IS
Answered by Iman S. Maths tutor

4917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Differentiate y=(x^2+5)^7


Does the equation x^2 + 2x + 5 = 0 have any real roots?


Find the derivative of sinx, use that to find the derivative of xsinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning