How do I differentiate y=(4+9x)^5 with respect to x?

The method we use to differentiate this form of equation is called the chain rule.

The chain rule is dy/dx = dy/du x du/dx

We can rememeber the right way up of the terms on the right hand side by treating them as fracions and cancelling to give dy/dx.

To use the chain rule we need to define our u. In this form of question we choose what is inside the brackets.

Let u=4+9x, this means that y=u^5.

Then by normal rules of differentiation we differentiate y and u giving:

dy/du = 5u^4   and    du/dx = 9

Then we substitue these results into the chain rule formula giving:

dy/dx = 9 x 5u^4 = 45u^4

Then we substitute u=4+9x back in to get our final answer:

dy/dx = 45(4+9x)^4

JH
Answered by Jenny H. Maths tutor

5190 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).


What is a complex number?


Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning