What is the indefinite integral of ln(x) ?

We can use integration by parts to solve this question. If we look at the formula for Integration by parts: ∫u(dv/dx)dx = uv - ∫ v (du/dx) dx, we see that u must be multiplied by something else so therefore, when we make u = ln(x), we put (dv/dx) = 1 (This is because ln(x)1 is still ln(x)). So in order to get v we integrate 1 with respect to x, and we get x. So, u = ln(x), v = x, (du/dx) = 1/x, (dv/dx) = 1.
And therefore, substituting everything into the formula , we get: ln(x) * x - ∫x
(1/x) dx. It follows through that ∫x*(1/x) dx becomes ∫1 dx which integrates to x. Putting all the parts together gives: xln(x)-x. We must also remember the constant of integration, and so, the final answer becomes: xln(x)-x+C.

DM
Answered by Dawud M. Maths tutor

4763 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the minimum of the equation sin^2(x) + 4sin(x)?


Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning