Given that Y=(x+3)(x+5); find dy/dx

Y=(x+5)(x+3) ............(1)The above expression on the right is a product of two expressions,Hence, product rule differentiation method will be employed as stated below:Y(u,v)=U(x).V(x) .........(2)dy/dx=Udv/dx + V.du/dx ............(3)But comparing (1) and (2) above we have, U=x+3....... (4) V=x+5 ......(5)Therefore by differentiation rule:Y=xn ; dy/dx=nxn-1Applying the above rule to (4) and (5) du/dx=1 .....(6) dv/dx=1 ....(7) Substituting (4) to (7) for (3) we have,dy/dx= (x+3).1 + (x+5).1 ...(8)Simplifying (8) above,dy/dx=x+3 +x+5=2x+8=2(x+4)

DE
Answered by Dr Edosa O. Maths tutor

2852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


Find the exact solution to: ln(x) + ln(7) = ln(21)


differentiate: y^2 + 3xy + x + y = 8


Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences