Differentiate with respect to x: y = xln[2x]

This is an example of a question where we would have to use the product rule for differentiation, because we have two functions multiplied together ( x and ln(2x) ).If we have: y = uv, where u and v are functions of x then the product rule tells us that dy/dx = uv' + vu'. So, if u = x and v = ln[2x] then u' = 1 and v' = 1/x . Remember that the differential of ln(f(x)) = f'(x) / f(x)Then, applying the product rule, we have that dy/dx = (x) (1/x) + (ln(2x)) (1) = 1 + ln(2x) Our final answer is: 1 + ln(2x)

MA
Answered by Muhammed Ali M. Maths tutor

5669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers


The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


Split 1/x^2-1 into partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning