Differentiate with respect to x: y = xln[2x]

This is an example of a question where we would have to use the product rule for differentiation, because we have two functions multiplied together ( x and ln(2x) ).If we have: y = uv, where u and v are functions of x then the product rule tells us that dy/dx = uv' + vu'. So, if u = x and v = ln[2x] then u' = 1 and v' = 1/x . Remember that the differential of ln(f(x)) = f'(x) / f(x)Then, applying the product rule, we have that dy/dx = (x) (1/x) + (ln(2x)) (1) = 1 + ln(2x) Our final answer is: 1 + ln(2x)

MA
Answered by Muhammed Ali M. Maths tutor

5671 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the curve y = 3x^4 - 8x^3 -3


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


how to find flight time/distance and greatest hight of projectiles?


How do I expand a bracket to a negative power if it doesn't start with a 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning