The equation of the line L1 is y = 3x – 2 . The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.

In order for two lines to be parallel, they need to have the same gradient (m). The gradient (m) is the coefficient of x in the line equation y=mx+c. Therefore, the gradient of L1 is 3 since 3 is the coefficient of x. For L2, you'll need to rearrange the equation so that you get it in the form of y=mx+c. So the first step would be to move -9x+5 to the right hand side: 3y=9x-5. Next, you'll have to divide everything by the coefficient of y (3). Therefore, you'll get y=3x-5/3. Now the gradient of L2 is 3 because x's coefficient is 3 and this is the same for L1 so the lines are parallel.

AK
Answered by Asimina K. Maths tutor

3676 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve a simultaneous equation?


How many roots does the following equation have? 2x^2 + 4x +2 = 0


Given the equations: x + 3y = 1 and 2x - y = -5, solve for x and y.


There are a total of 50 apples and pears (apples + pears) in a large basket. If the total number of apples was doubled and the total number of pears was tripled, these two numbers would add up to 130. How many apples and pears are in the basket?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning