Solve algabraically: 6a+b=16 and 5a-2b=19

To answer this we want to split up the 'a' parts and 'b' parts of the question and answer them seperately because we can't answer the question with two letters. We can change one equation to b=16-6a and now substitute this equation for b into the other equation: 5a - 2(16-6a)=19. Now multiply out the bracket: 5a - 32 +12a=19. Now we can solve this equation for a: 17a=51 which means that a=3. Now we know what a is we can put this into the equation that tells us b: b=16-6(3)--> b=-2. And now we have our two answers a=3 and b=-2. You can check this is right by putting both number back into the original equations and checking that the equations work.

AS
Answered by Anna S. Maths tutor

5290 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a=2 and b=3 , find the value of 2(a−b)+3(a+b)


f(x) = x^2 + 2x - 3. Where does the graph of the function f intersect the x-axis?


Bag A contains £7.20 in 20p coins. Bag B contains only 5p coins. The number of coins in bag B is three-quarters of the number of coins in bag A. How much money is in bag B? (in £s)


Solve x² + x -12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning