Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2

When a function is increasing, it’s derivative is positive. So first let us differentiate f(x). To differentiate xn we multiply by n and then reduce the power by 1. So f’(x)=8-2*2x=8-4x. We want to find the values of x for which the derivative is positive i.e. f’(x)>0. So we want to find the values of x for which 8-4x>0. We need to rearrange the inequality to isolate x. Firstly, subtract 8 from both sides to give -4x>-8, then divide both sides by -4, making sure to reverse the inequality sign since we are dividing by a negative number, to get x<2. Hence our function has a positive derivative when x is less than 2, so our function f(x) is increasing for all x<2.

RL
Answered by Ruby L. Maths tutor

11880 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning