Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2

When a function is increasing, it’s derivative is positive. So first let us differentiate f(x). To differentiate xn we multiply by n and then reduce the power by 1. So f’(x)=8-2*2x=8-4x. We want to find the values of x for which the derivative is positive i.e. f’(x)>0. So we want to find the values of x for which 8-4x>0. We need to rearrange the inequality to isolate x. Firstly, subtract 8 from both sides to give -4x>-8, then divide both sides by -4, making sure to reverse the inequality sign since we are dividing by a negative number, to get x<2. Hence our function has a positive derivative when x is less than 2, so our function f(x) is increasing for all x<2.

RL
Answered by Ruby L. Maths tutor

10750 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I integrate the indefinite integral x^2 dx?


Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


What's the deal with Integration by Parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences