f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0

firstly, x2 + 4 = 0 x2 = -4 x = 2i x = -2iSecondly, x2 + 8x + 25 = 0 using the quadratic formulae: x = (-b +- sqrt(b2 - 4ac))/2a x = (-8+-sqrt(64-100))/2 x = -8/2 +- sqrt(-36)/2 x = -4 + 3i x = -4 - 3i

LS
Answered by Laura S. Maths tutor

5580 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


Find the stationary point of y=3x^2-12x+29 and classify it as a maximum/minimum


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning