When do you use integration by parts?

The formula for integration by parts is Integral(udv/dx)dx = uv - Integral(vdu/dx)dx
You use integration by parts when you have an integral where you have to terms multiplied together ie Integral(u*dv/dx)dx eg Integral(5xex)dx.From here you need to identify what term is u and what term is dv/dx from our example integral.
A good way to do this is to use the abbreviation u = LATE, where we select our u variable in the order of what our term is. Ie u = logarithm, algebraic term, trigonometric term, exponential term. In our example, u = 5x, and we therefore select dv/dx = ex.Now, we differentiate y and integrate dv/dx in order to use the formula ie du/dx = 5 and v = ex.We now substitute in our values:5xex - Integral(5ex)dx = 5xex -5ex In this question we have indefinite limits ie we never specified them. If we had limits a and b then we would integrate this over a and b.

AB
Answered by Alex B. Maths tutor

4823 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that sqrt(2) is irrational


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


Given that the binomial expansion of (1 + kx) ^ n is 1 - 6x + 30x^2 + ..., find the values of n and k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning