Write x^2+4x-12 in the form (x+a)^2+b where 'a' and 'b' are constants to be determined.

This question is asking us to complete the square. To find the value of a we must halve the coefficient of x. So, in this question: a = 4/2 = 2. To find the value of b we take the constant at the end of the quadratic, -12, in this case and subtract a2 from it: x2+4x-12 = (x+2)2-12-(2)2 - our value of a = 2, and 22 = 4 so: (x+2)2-12-4 = (x+2)2-16. So, a = 2, and b = -16. To check if these 2 quadratics are equal we can simply expand (x+2)2-16 to get: x2+2x+2x+4-16 = x2+4x-12 so we know we have completed the square correctly.

FA
Answered by Fizza A. Maths tutor

8853 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation by elimination: 3x + y = 11 and 5x + y = 4


What are the two roots of the equation y=x^2+5x+6?


Joan cycles from her house to a shop 900 m away. She then cycles to her friends' house 700 m away. The average speed for the first part of her journey is 2 m/s. The second part takes her 16 mins. What is the average speed for her entire journey?


How do I find roots of a quadratic equation when I can't factorise?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning