Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d

Split the first equation into three parts, i.e. (x+1), (x-2) and (x+3). Multiply the first two parts to get x2- x - 2, then multiply the result with the third part to get x3 + 2x2 - 5x - 6. All that is left now is to solve the equation x3 + 2x2 - 5x - 6 = ax3 + bx2 + cx + dand you can see that a = 1b = 2c = -5d = -6

GM
Answered by Gustas M. Maths tutor

3831 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of 2x^5 - 1/4x^3 - 5


Find the first 3 terms and the sum to infinity of a geometric series with first term, 10 and common ratio 0.2


Use integration by parts to find the integral of xsinx, with respect to x


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning