Let f be a function of a real variable into the real domain : f(x) = x^2 - 2*x + 1. Find the roots and the extremum of the function f.

Let f be a function of a real variable into the real domain : f(x) = x^2 - 2x + 1. Find the roots and the extremum of the function f.i) Root finding The function f is a 2nd degree polynomial. The root finding formula is hence applicable (Reminder if f(x) =ax^2+bx+c a 2nd degree polynomial, a, b and c real variables then its roots are defined by x = (-b +- sqrt(b^2-4ac))/(2a) ) The determinant of the 2nd degree polynomial is delta = (-2)^2-411 = 0 . The function hence only has one repeated root given by x = (-(-2)+sqrt(0))/21 = 1 . ii) Finding the extremum To find the extremum of a function we need to analyse the behaviour of its 1st derivative. f is continuous in the real domain, its derivative is hence defined for all real x . f'(x) = 2x - 2 f'(x) = 0 implies x = 1 . The extremum is hence located at x=1 and is the repeated root of the function. Before and after x=1, f(x) is strictly greater than 0, the extremum is hence a minimum. Those conclusions could have found by graphing the function.

MM
Answered by Matteo M. Maths tutor

3017 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(e*sqrt(e))/cuberoot(e^2)=e^k find k


Find the point(s) of intersection of the graphs y=x^2+4x-21 and x+y=-27 using an algebraic method.


How do you factorise a quadratic equation?


How to Solve: (11 − w)/4 = 1 + w


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning