Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V = piint_{0}^{1} (x2e4x) dx.
Using the integration by parts formula (below), one can yield an intermediary equation, namely V = pi*[e4/4-(1/2)int_{0}^{1} (xe4x)]. Application of the integration by parts formula again solves the second integral of xe4x, and substituting in the limits of 0 and 1 yields a final answer of: (pi/32)(5e4-1).

Integration by parts formula: int(uv') = uv - int(u'v).

HS
Answered by Hanish S. Maths tutor

3358 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)


Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


The quadratic equation 2x^2+ 6x+7 has roots a and b. Write down the value of a+b and the value of ab.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning