A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.

The standard equation of a circle is in the form (x-a)^2+(y-b)^2=r^2, where the coordinates of the centre of the circle is (a,b) and the radius of the circle is r. Therefore, you must put the given equation into the standard form by completing the square for the expresions x^2-6x and y^2-14y in order to find the centre and radius if the circle.When you have completed the square for the two expressions, the equation will be (x-3)^2-9+(y-7)^2-49+54=0. To get the equation into the standard form you must then simplify and rearrange the equation to get (x-3)^2+(y-7)^2=4. Therefore, the coordinates of the centre of the circle A is (3,7) and the radius of the circle A is 2.

EQ
Answered by Evelyn Q. Maths tutor

4061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the angle between two vectors?


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences