How do I solve x^2 > 6 - x

To solve this question we want to find the range of values that x can be to make the statement true. First we must treat it like a normal quadratic equation and move all of the values onto one side like so: x2 + x - 6 > 0. Next we want to factorise the left hand side to get: (x + 3)(x - 2) > 0.The best thing to do here is to draw the graph of y = (x + 3)(x - 2), to do this it we know it has a positive quadratic shape and at y = 0 (where it crosses the x-axis) x = -3 or x = 2. Now we want all the values of x when y = (x + 3)(x - 2) > 0 so effectively where the graph is above the x-axis. We can see from the graph that the outer values of x are positive and so we can say:x < -3 or x > 2

BH
Answered by Ben H. Maths tutor

4079 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


Find two positive numbers whose sum is 100 and whose product is a maximum.


Prove that √2 is irrational


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning