The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.

The first derivative is otherwise denoted by dy/dx.dy/dx = 12x^3 -24x^2.The second derivative is denoted by d2y/dx2, otherwise known as the first derivative of the function dy/dx.d2y/dx2 = 36x^2 - 48x.A stationary point exists if dy/dx = 0 has a valid solution for x. dy/dx = 12x^3 -24x^2 = 0 ==> x = 0 and x = 2. (Check by substitution (dy/dx at x =2) and by finding the solution for dy/dx = 0).Substitute x =2 into d2y/dx2 = 36x^2 - 48x. The result is at x =2, d2y/dx2 is 48 > 0 and hence this stationary point is classified as a minima / minimum.

JB
Answered by Jemisha B. Maths tutor

5722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following equation: y = 2(x^3) - 6x


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


Find the derivative of f(x)=x^2log(2x)


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning