Answers>Maths>IB>Article

Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.

QUESTION (a) R = U(n+1)/U(n ) = 5/25= 0.2(b) (i) U(10) = 25 x (1/5)^9 = 0.0000128 (ii) U(n) = 25 x (1/5)^(n-1)(c) S = U(1)/(1-r) = 25/(1-(1/5))=25/(4/5))=125/4=31.25

CR
Answered by Carlota R. Maths tutor

6037 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the limit for this function as x approaches 0? y(x)=(cos x)^(1/sin x)


Let f(x)= x^2+4, and g(x)= 3x; Find g(f(1))


Having x(x+4)=y, calculate dy/dx


If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences