Find the gradient of the line on which the points (1,3) and (3,4) lie and find the y-coordinate of the line at x = 7.

The gradient is m = (y1-y0)/(x1-x0) = (4-3)/(3-1) = 1/2. So the equation of the line is y= x/2 + c where c is a constant. To find the constant, c, we will input one of the given coordinates (1,3). This shows 3 = 1/2 + c, so c= 5/2 or 2.5. Therefore, the equation of this line is y = x/2 + 5/2. So, when x=7, y = 7/2 + 5/2 = 6.

RL
Answered by Ryan L. Maths tutor

2970 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


How do I solve the following question. 'Find the values of x such that 2log3(x) - log3(x-2) = 2'.


Frank buys a car at the start of 2015, for £12,000. Each year the value fo the car depreciates by 9%. What was the value of the car at the end of 2019?


In a group of 40 people, 16 owned at least a phone, 7 owned only a tablet and it's known 13 owned both. What's the probability that a person, picked at random, owned neither?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences