How do I show two vectors are perpendicular?

Vectors can describe a line of particular length ("magnitude") and direction. The angle x between two vectors a and b can be found using the formula a.b = |a| |b| cosx. For the vectors to be perpendicular (at right angles) then cosx = 0, so we know that the dot product or scalar product a.b must = 0. If you calculate the scalar product and show it = 0 the vectors must be perpendicular.
To calculate the scalar product of two vectors eg a = 3i + 4j - 12k and b= 4i + 3j + 2k we simply multiply the two i terms, the two j terms, the two k terms and add them all up, being careful with the + or - signs. So here a.b = 12 + 12 - 24 = 0. Therefore a and b are perpendicular.

SA
Answered by Sarah A. Maths tutor

92742 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


How do I rewrite 2 cos x + 4 sin x as one sin function?


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences