How do I show two vectors are perpendicular?

Vectors can describe a line of particular length ("magnitude") and direction. The angle x between two vectors a and b can be found using the formula a.b = |a| |b| cosx. For the vectors to be perpendicular (at right angles) then cosx = 0, so we know that the dot product or scalar product a.b must = 0. If you calculate the scalar product and show it = 0 the vectors must be perpendicular.
To calculate the scalar product of two vectors eg a = 3i + 4j - 12k and b= 4i + 3j + 2k we simply multiply the two i terms, the two j terms, the two k terms and add them all up, being careful with the + or - signs. So here a.b = 12 + 12 - 24 = 0. Therefore a and b are perpendicular.

SA
Answered by Sarah A. Maths tutor

115374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


A curve has the equation y=12+3x^4. Find dy/dx.


At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


proof for the derivative of sin(x) is cos(x) (5 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning