Integrate y= x^3+3x^2-4x-7 between x values 1 and 3

Firstly, integrate y with respect to dx. Increase the powers of x by 1 and then divide the coefficient of x by the new power of x. I.e.: x^3 becomes 1/4x^4. The power increases from 3 to 4 and the coefficient, 1, is divided but the new power 4 to give a new coefficient of a quarter. Integrating the full expression gives: = 1/4x^4+x^3-2x^2-7x+c. C is the constant but at the next stage of the question will become irrelevant.
now the x values need to be added into this new integral and subtracted from one another as follows:[1/4(3)^4+(3)^3-2(3)^2-7(3)]-[1/4(1)^4+(1)^3-2(1)^2-7(1)]=[81/4+27-18-21]-[1/4+1-2-7]=[20-12+8]=16

LA
Answered by Louis A. Maths tutor

3257 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.


A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning