Integrate y= x^3+3x^2-4x-7 between x values 1 and 3

Firstly, integrate y with respect to dx. Increase the powers of x by 1 and then divide the coefficient of x by the new power of x. I.e.: x^3 becomes 1/4x^4. The power increases from 3 to 4 and the coefficient, 1, is divided but the new power 4 to give a new coefficient of a quarter. Integrating the full expression gives: = 1/4x^4+x^3-2x^2-7x+c. C is the constant but at the next stage of the question will become irrelevant.
now the x values need to be added into this new integral and subtracted from one another as follows:[1/4(3)^4+(3)^3-2(3)^2-7(3)]-[1/4(1)^4+(1)^3-2(1)^2-7(1)]=[81/4+27-18-21]-[1/4+1-2-7]=[20-12+8]=16

LA
Answered by Louis A. Maths tutor

3035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


The number of bacteria present in a culture at time t hours is modeled by the continuous variable N and the relationship N = 2000e^kt, where k is a constant. Given that when t = 3, N = 18 000, find (a) the value of k to 3 significant figures


Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2


Why/How does differentiation work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning