Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]

tan(x) is defined as sin(x)/cos(x) For a function which can be written as f(x) = u(x)/v(x) the quotient rule can be appliedThe quotient rule states f ' (x) = (u'v-v'u)/v^2 Applying this to the formula for tan we obtain ( cos(x)cos(x) - (-sin(x)sin(x))/(cos(x)^2)Examining the numerator the minus's cancel and we obtain sin(x)^2+cos(x)^2 by a quotable identity this always equals 1Hence the expression simplifies to 1/cos(x)^2 = sec^2(x) as originally statedHence shown.

OC
Answered by Oliver C. Maths tutor

3598 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


Can you help me understand how Arithmetic sequences work?


If cos(x)= 1/3 and x is acute, then find tan(x).


If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning