∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

MT
Answered by Michael T. Maths tutor

48660 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral of Ln(x)


Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


If cos(x)= 1/3 and x is acute, then find tan(x).


Find the roots of x^3 + 4x^2 - 5x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning