∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

MT
Answered by Michael T. Maths tutor

48709 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


When you integrate a function why do you add a constant?


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning