Solve the Simultaneous equation: 6x+3y=13, 14x-9y=9?

First we need to eliminate one of the Variables, to have an equation dependant on one variable. The coefficient for y in equation two is a third of the coefficient of the y in the second equation. Therefore, time the first equation by three to get 18x+9y=39. Now you can cancel the y out in each equation by adding the two variable together. This gets you 32x=48, from this you get that x=3/2. Now you have the value of one of the variables so you can plug in the value into one of the equations to obtain a value for the other variable. Plugging in value of x into the first question to obtain: 3y+9=13. Tidy up the equation to get 3y=4. From this you obtain that y=4/3. Hence the values for the two variables are: x=3/2, y=4/3

MM
Answered by Matthew M. Maths tutor

2814 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the straight line passing trough the points (-2,1 ) and (1, 4).


Find the possible values of x when x^2+8x+15=0


Solve the simultaneous equations 1) 3x + 2y = 4 & 2) 4x + 5y = 17


3 teas and 2 coffees have a total cost of £7.80; 5 teas and 4 coffees have a total cost of £14.20. Work out the individual cost of one tea and one coffee.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences