Solve the Simultaneous equation: 6x+3y=13, 14x-9y=9?

First we need to eliminate one of the Variables, to have an equation dependant on one variable. The coefficient for y in equation two is a third of the coefficient of the y in the second equation. Therefore, time the first equation by three to get 18x+9y=39. Now you can cancel the y out in each equation by adding the two variable together. This gets you 32x=48, from this you get that x=3/2. Now you have the value of one of the variables so you can plug in the value into one of the equations to obtain a value for the other variable. Plugging in value of x into the first question to obtain: 3y+9=13. Tidy up the equation to get 3y=4. From this you obtain that y=4/3. Hence the values for the two variables are: x=3/2, y=4/3

MM
Answered by Matthew M. Maths tutor

3153 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I struggle with simultaneous equations, when you have a quadratic involved


What is the definition of the slope?


Make x the subject of the equation y = {2(1+x)}/(3x+1)


The length of a rectangle is five times the width. The area of the rectangle is 1620 cm(squared) Work out the width of the rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning