Differentiate sin(x)cos(x) with respect to x?

You will have to use the Product Rule. The Product rule: when y=f(x)g(x), then dy/dx=f'(x)g(x)+f(x)g'(x). In this example, f(x)=sin(x) and g(x)=cos(x). Hence f'(x)=cos(x) and g'(x)=-sin(x). Using these and subbing into the Product rule, dy/dx=cos2(x)-sin2(x).

MM
Answered by Matthew M. Maths tutor

4493 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


y = 4(x^3) + 7x ... Find dy/dx


Differentiate y = (sin(x))^2 (find dy/dx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences