Integrate x/((1-x^2)^0.5) with respect to x

x = sin(u), dx/du = cos(u), dx = cos(u) * du,[x/(1-x^2)^0.5)] * dx = [sin(u)/((1-(sin(u)^2))^0.5] * cos(u) * du = [sin(u)/(cos(u)^2)^0.5] * cos(u) * du = sin(u) * duIntegral of sin(u) * du = -cos(u) = -(1-sin(u)^2)^0.5 = -(1-x^2)^0.5

AP
Answered by Andrew P. Maths tutor

4465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)


Simplify: (log(40) - log(20)) + log(3)


Find Dy/Dx of (x^2+4x)^3


Show how '2sin(x)+sec(x+ π/6)=0' can be expressed as √3sin(x)cos(x)+cos^2(x)=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning