If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
If v(x) = x2 then v'(x) = 2x.
Hence, f'(x) = ((2cos(2x)*x2) - (sin(2x)*2x))/(x4)
(Will be easier to explain on a whiteboard w/ standard visualisation of functions)

LR
Answered by Leo R. Maths tutor

3838 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral on ln(x).


Differentiate sin(x)cos(x) using the product rule.


Find the area under the curve of y=x^2 between the values of x as 1 and 3


The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning