Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.

Write out the product rule: if y=f(x)g(x) where f and g are functions, dy/dx = f'(x)g(x) + f(x)g'(x)
Substitute in the expressions from the question:Therefore if f(x)=cos(3x) and g(x) = cosec(5x), f'(x) = -3sin(3x) and g'(x) = -5cosec(5x)cot(5x)
Solve the question: It follows that if y=f(x)g(x), then dy/dx = -3sin(3x)cosec(5x) - 5cos(3x)cosec(5x)cot(5x) or equivalently dy/dx = -3sin(3x)/sin(5x) - 5cos(3x)cos(5x)/sin^2(5x)

HL
Answered by Harry L. Maths tutor

3325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation x^6 + 26x^3 − 27 = 0


How do i differentiate the equation y = x^2 + 6x + 2 with respect to x.


Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?


Given that y={(x^2+4)(x−3)}/2x, find dy/dx in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences