If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

JM
Answered by Jordan M. Maths tutor

6647 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3


Find X log(x)=4 Base 10


A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning