If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

JM
Answered by Jordan M. Maths tutor

6609 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradients of y = 3x^2 − (2/3) x + 1 at x = 0


How do you do integration by parts?


differentiate (1+2x^2)^(1/2)


Find y if dy/dx = y² sec²(x), given that y(0) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning