a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x

To differentiate xcos(2x), you first have to use the product rule, because this function is two functions (x and cos(2x) multiplied togetherNow you have x*(cos(2x))'+cos(2x)To differentiate cos(2x) you have to use the chain rule, in this case its -2sin(2x)Therefore xcos(2x)'=cos(2x)-2xsin(2x)To integrate xcos(2x) we must use integration by partsTo recall= Integral(u(x)v'(x)dx)=u(x)v(x)-integral(u'(x)v(x)dx)so we choose u=x u'=1 and v'=cos(2x) v=0.5sin(2x)so the integral is now written as 0.5xsin(2x)-integral(0.5sin(2x))dx=0.5xsin(2x)-0.25cos(2x)+C

DM
Answered by Danila M. Maths tutor

3879 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you show that a vector is normal to a plane in 3D space?


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


find x: e^(3x-9) = 8


Solve the ODE y' = -x/y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning