a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x

To differentiate xcos(2x), you first have to use the product rule, because this function is two functions (x and cos(2x) multiplied togetherNow you have x*(cos(2x))'+cos(2x)To differentiate cos(2x) you have to use the chain rule, in this case its -2sin(2x)Therefore xcos(2x)'=cos(2x)-2xsin(2x)To integrate xcos(2x) we must use integration by partsTo recall= Integral(u(x)v'(x)dx)=u(x)v(x)-integral(u'(x)v(x)dx)so we choose u=x u'=1 and v'=cos(2x) v=0.5sin(2x)so the integral is now written as 0.5xsin(2x)-integral(0.5sin(2x))dx=0.5xsin(2x)-0.25cos(2x)+C

DM
Answered by Danila M. Maths tutor

3668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I use the normal distribution table to find probabilities other than P(z<Z)?


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning