Integrate Sin(x)Cos(x)dx.

Integral(Sin[x]Cos[x]dx) can be calculated. The method is to recognise that the trigonometric identity of 2Sin[x]Cos[x]=Sin[2x] can be applied. This would transform the integral into Integral(0.5Sin[2x]) which can of course be resolved to Cos[2x] + C.

DD
Answered by Daniel D. Maths tutor

4605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = x^2(cos(x)).


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning