Integrate Sin(x)Cos(x)dx.

Integral(Sin[x]Cos[x]dx) can be calculated. The method is to recognise that the trigonometric identity of 2Sin[x]Cos[x]=Sin[2x] can be applied. This would transform the integral into Integral(0.5Sin[2x]) which can of course be resolved to Cos[2x] + C.

DD
Answered by Daniel D. Maths tutor

4156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


How to integrate by parts


differentiate 2^x


solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning