Integrate Sin(x)Cos(x)dx.

Integral(Sin[x]Cos[x]dx) can be calculated. The method is to recognise that the trigonometric identity of 2Sin[x]Cos[x]=Sin[2x] can be applied. This would transform the integral into Integral(0.5Sin[2x]) which can of course be resolved to Cos[2x] + C.

DD
Answered by Daniel D. Maths tutor

4602 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the term x^2?


Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


How do you integrate by parts?


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning