How can we calculate the derivative of function f(x)= (x+2)/(x-1)?

In order to calculate the derivative of the given function, we need to apply the laws of derivation. Therefore:
f '(x) = ((x+2)/(x-1))'
f '(x) = [(x+2)' * (x-1) - (x+2) * (x-1)' ]/ (x-1)2
f '(x) = [ 1 * (x-1) - (x+2) * 1] / (x-1)2
f '(x) = x-1-x-2 / (x-1)2
f '(x) = -3 / (x-1)2
Therefore, we have calculated the derivative of the given function.

CB
Answered by Cosmin B. Maths tutor

4548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = (sin(x))^3. What is f'(x)


Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences