The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?

f(x) = x3 + 3x V = π ∫ (f(x)2) dx V = π ∫02 (x3 + 3x)(x3 + 3x) dx V = π ∫02 (x6 + 6x4 +9x2) dx V = π[x7/7 + 6x5/5 + 3x3] V = 2824/35

ZC
Answered by Zac C. Maths tutor

3402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


What is differentiation and integration?


The line AB has equation 3x + 5y = 7. Find the gradient of line AB.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning