The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?

f(x) = x3 + 3x V = π ∫ (f(x)2) dx V = π ∫02 (x3 + 3x)(x3 + 3x) dx V = π ∫02 (x6 + 6x4 +9x2) dx V = π[x7/7 + 6x5/5 + 3x3] V = 2824/35

ZC
Answered by Zac C. Maths tutor

3520 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Draw the curve for x^2-5x+6


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


Find the derivative of f(x)=x^3 sin(x)


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning