Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2

First, we differentiate our equation using the power rule:dy/dx = 8x - 7This is the gradient of our tangent, to the original equation, at any point x. So, to calculate the gradient at x = 2, we substitute this value into dy/dx.So, we have: gradient = 8(2) - 7 = 9 as required.

LA
Answered by Luke A. Maths tutor

4389 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


Solve x^2 > |5x - 6|


Integrate the function (3x+4)^2 using methods of expansion and substitution


Differentiate: (12x^3)+ 4x + 7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences