Find the integers n such that 4^(n)-1 is prime.

4^(n)-1 factors to (2^(n)-1)(2^(n)+1) by difference of two squares by definition of a prime (only has factors 1 and itself (given that itself isn't 1))So Exactly one of the brackets should = 1 for 4^(n)-1 to be primeLooking at the first bracket, to see when it = 1, we see: (2^(n)-1) = 1 implies 2^(n) = 2 and so n = 1 is the solution. Checking the other bracket we see it equals 5 (which isn't 1). And so n = 1 is a solution.Now to make the 2nd bracket = 1 we use a similar method to see 2^(n) = 0 and we know that exponential functions never = 0 so there is no solution for the 2nd bracket = 1 .and so the only solution is n= 1. and to check that this is a solution we can substitute it in, giving 3, which is indeed prime.

GH
Answered by George H. Maths tutor

2928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


How do I do binomial expansions for positive integer n?


Differentiate sin(x)*x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning