Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.

Firstly, to begin this problem we must think of the best way to substitute the given values into the formula. For a start, we are given the tangent at x=2. In other words, this is equal to the derivative at x=2. Therefore, if we calculate f’(x), we find that f’(x)=2ax+b. Substituting x=2 and f’(2)=16, we have that 16=2(2)a+b=> b=16-4aWe are also given that there is an x intercept at (0,0), and thus:f(0)=a(0)2+b(0)+c=> 0=cMoreover, we know the other x-intercept is (8,0):0=a(8)2+b(8)+0=> 64a+8b=0.
We now have a system of equations with two variables a and b.
64a+8b=04a+b=16.
Solving for b in the second equation and substituting into the first, b=16-4aand 64a+8(16-4a)=0=> 64a-32a+128=0=>32a=-128=>a=-4
Lastly. To find b, we substitute the value of a into one of the equations,b=16-4(-4)=> b= 32
Finally, now that we have found a=-4,b=32, and c=0,f(x)=-4x2+ 32x


AA
Answered by Alejandra A. Maths tutor

6806 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


Find the integral of arctan(x)


Differentiate y=(5x^4)cos(2x)


Where does the quadratic formula come from?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning