Integrate using by parts twice : ∫e^(x)*(cos(x))dx

By putting u=cosx and v’= e^x , use the by parts formula to get:∫e^(x)(cos(x)) dx = cos(x)e^x - ∫-(e^x)sin(x) dx. Use by parts again on the second term to get ∫ =cos(x)e^x + sin(x)e^x - ∫e^(x)(cos(x))dx. The last term is the same integral as the one we have to solve. Take this to the other side to get: 2 ∫e^(x)(cos(x))dx = cos(x)e^x + sin(x)e^x which gives: ∫e^(x)(cos(x))dx = (e^x(cosx+sinx))/2 + Constant

IZ
Answered by Isma Z. Maths tutor

6659 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin(x)cos(x)^2 from 0 to π/2


How do you find the distance a ball travels if fired at speed u and angle theta from the ground?


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


Find where the graph of y=3x^2+7x-6 crosses the x axis


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning