Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx

Step 1 differentiate substitution: du/dx = -2sin(2x)Step 2 rearrange for dx: dx=du/-2sin(2x)Step 3 substitute: integral= ∫u2sin3(2x).du/-2sin(2x)Step 4 get the integral in terms of u by cancelling: integral=-o.5∫u2sin2(2x)dunote the identity sin2(2x)+cos2(2x)=1integral=-0.5∫u2(1-cos2(2x))du =-0.5∫u2(1-u2)du =-0.5∫u2-u4duStep 5 integrate: integral= -0.5(1/3u3-1/5u5)+cintegral= -1/6u3+1/10u5+cStep 6 replace u with substitution: integral= -1/6cos3(2x)+1/10cos5(2x)+c-

NA
Answered by Nabeel A. Maths tutor

6931 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the set of values of x for which 3x^2+8x-3<0.


I don't fully understand the purpose of integration. Could you please explain it to me?


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


How do you find the coordinate of where two lines intersect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences