How do I solve simultaneous equations by substitution?

You can solve simultaneous equations by either substitution or elimination. Say we have the equations:(1) 8y + 6x = 24 and (2) 2y - x = 6SUBSTITUTION METHODFirst, you need to find x in terms of y (or y in terms of x) by rearranging one of the equations. In this case, we'll rearrange equation (2): (2) 2y - x = 20 => (3) x = 2y - 6Next, plug the new expression (3) into the other equation (1): 8y + 6(2y - 6) = 24 => 8y + 12y - 36 = 24 => 20y = 60 => y = 3Then, you can plug the answer to into the other equation (3) to get the value for x: x = 2(3) - 6 = 0So, x = 0 and y = 3Finally, don't forget to check your answer to make sure the numbers make sense! 8(3) + 6(0) = 24 []

JN
Answered by Joshua N. Maths tutor

2535 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Evaluate 25^(3/2) giving your answer as an integer or simplified fraction (2 marks).


Find the minimum value of the quadratic equation: y = x^2 + 4x - 12


Show that (2x^2 + x -15)/(2x^3 +6x^2) * 6x^3/(2x^2 - 11x + 15) simplifies to ax/(x + b) where a and b are integers


3x+2y=12 ; 5x+3y=19


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences