How do I solve simultaneous equations by substitution?

You can solve simultaneous equations by either substitution or elimination. Say we have the equations:(1) 8y + 6x = 24 and (2) 2y - x = 6SUBSTITUTION METHODFirst, you need to find x in terms of y (or y in terms of x) by rearranging one of the equations. In this case, we'll rearrange equation (2): (2) 2y - x = 20 => (3) x = 2y - 6Next, plug the new expression (3) into the other equation (1): 8y + 6(2y - 6) = 24 => 8y + 12y - 36 = 24 => 20y = 60 => y = 3Then, you can plug the answer to into the other equation (3) to get the value for x: x = 2(3) - 6 = 0So, x = 0 and y = 3Finally, don't forget to check your answer to make sure the numbers make sense! 8(3) + 6(0) = 24 []

JN
Answered by Joshua N. Maths tutor

3222 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a rectangle has sides (x+3) and (2x-1) and an area of 15, find x and the length of each side.


Show that (sqrt(3) + sqrt(75))^{2} = 108


For what values of k does the line y=kx-1 have two distinct points of intersection with the circle (x-2)^2+(y-3)^2=2?


Find the roots of the following function: f(x)= 3*(x-1)^2 - 6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning