y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.

Differentiate to get dy/dx=20-2x-6x^2Then stationary points occur when dy/dx = 0 so 0 = 20-2x-6x^2 Factorise to get x= -2, x=5/3Differentiate dy/dx to get second derivative = -2-12x at x=5/3 is -22 so max pointat x=-2 second derivative is 24>0 so min point.

EJ
Answered by Emily J. Maths tutor

3992 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a stationary point on a curve? How do I calculate the co-ordinates of a stationary point?


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


Outline the various ways that you can differentiate a function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning