y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.

Differentiate to get dy/dx=20-2x-6x^2Then stationary points occur when dy/dx = 0 so 0 = 20-2x-6x^2 Factorise to get x= -2, x=5/3Differentiate dy/dx to get second derivative = -2-12x at x=5/3 is -22 so max pointat x=-2 second derivative is 24>0 so min point.

EJ
Answered by Emily J. Maths tutor

4032 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the second derivative used for?


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning