Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2

First, we use 1 - sin(x)^2 = cos(x)^2 and get:(LHS) (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2)= (cos(x)^2 + 4 sin(x)^2)/cos(x)^2= 1 + 4 (sin(x)/cos(x))^2= 1 + 4 tan(x)^2Now we know that the left hand side is equal to 7.Hence, 1 + 4 tan(x)^2 = 7 <=> tan(x)^2 = 3/2

BM
Answered by Bogdan-Adrian M. Maths tutor

7180 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain the chain rule of differentiation


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


How do I find the angle between 2 vectors?


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning