Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2

First, we use 1 - sin(x)^2 = cos(x)^2 and get:(LHS) (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2)= (cos(x)^2 + 4 sin(x)^2)/cos(x)^2= 1 + 4 (sin(x)/cos(x))^2= 1 + 4 tan(x)^2Now we know that the left hand side is equal to 7.Hence, 1 + 4 tan(x)^2 = 7 <=> tan(x)^2 = 3/2

BM
Answered by Bogdan-Adrian M. Maths tutor

6844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


How do you find the roots of a cubic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences