A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx

In questions where we have a function of x and y equal to a constant, we need to find dy/dx indirectly.We use the formula (df/dx) + (df/dy)(dy/dx) = 0So all we do is differentiate each term in the function with respect to x (assuming y is a constant) to give us our df/dx term, which is 0-6ye-2x+4x.Then we differentiate each term with respect to y (now assuming x is a constant) to give us our df/dy term, which is 3cos(3y)+3e2x+0.Plugging these terms directly into our formula and re-arranging for dy/dx we get:dy/dx = (6ye-2x-4x)/(3cos(3y)+3e-2x)

LW
Answered by Lewie W. Maths tutor

3203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


A curve has parametric equations x=2t, y=t^2. Find the Cartesian equation of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences