A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx

In questions where we have a function of x and y equal to a constant, we need to find dy/dx indirectly.We use the formula (df/dx) + (df/dy)(dy/dx) = 0So all we do is differentiate each term in the function with respect to x (assuming y is a constant) to give us our df/dx term, which is 0-6ye-2x+4x.Then we differentiate each term with respect to y (now assuming x is a constant) to give us our df/dy term, which is 3cos(3y)+3e2x+0.Plugging these terms directly into our formula and re-arranging for dy/dx we get:dy/dx = (6ye-2x-4x)/(3cos(3y)+3e-2x)

LW
Answered by Lewie W. Maths tutor

3261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the point of a derivative?


Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.


How would you show that a vector is normal to a plane in 3D space?


Find the derivative of the following function: f(x) = x(x^3 + 2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences